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This paper presents a two-dimensional-in-space mathematical model of amperomet-
ric biosensors with perforated and selective membranes. The model is based on the
diffusion equations containing a non-linear term of the Michaelis–Menten enzymatic
reaction. Using numerical simulation of the biosensors action, the influence of the
geometry of the perforated membrane on the biosensor response was investigated. The
numerical simulation was carried out using finite-difference technique. The calculations
demonstrated non-linear and non-monotonous change of the biosensor steady-state
current at various degree of the surface of the perforated membrane covering. The non-
monotonous behaviour of the biosensor response was also observed when changing the
thickness of the perforated membrane.
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1. Introduction

Biosensors are analytical devices consisting mainly of a biological entity
that recognises the target analyte and the transducer that translates the biorec-
ognition event into an electrical signal [1–3]. The signal is proportional to the
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concentration of the analyte. The biosensors are classified according to the
nature of the physical transducer [4]. The amperometric biosensors measure the
faradic current that arises on a working indicator electrode by direct electro-
chemical oxidation or reduction of the products of the biochemical reaction [5].
In amperometric biosensors the potential of the electrode is held constant while
the current is measured. The amperometric biosensors are known to be reliable,
cheap and highly sensitive for environment, clinical and industrial purposes [6,7].

A practical biosensor contains a multilayer enzyme membrane [1,8]. The elec-
trode acting as a transducer of the biosensor is covered by selective membrane,
following a layer of immobilized enzyme and an outer membrane. The outer
membrane can be prepared from a dialysis membrane or, in modern biosensors,
from perforated nucleopore type membrane [9]. The selective membrane is used
to increase biosensors selectivity [10–12].

To improve the productivity and efficiency of biosensors design, to optimize
the biosensors configuration a model of the real biosensors should be build [13–
16]. The modelling of biosensors with perforated membranes has been performed
by Schulmeister and Pfeiffer [17]. The model did not take into account the geom-
etry of the holes in the membranes, included the diffusion coefficients having
limited physical sense, and as authors recognized “its quantitative value is lim-
ited” [17]. The task of our investigation was to build the model approaching the
real amperometric biosensor and to prepare friendly usable surrounding for the
program use. By changing input parameters the output results were numerically
analyzed with special emphasis to the influence of enzyme and membranes param-
eters to the response of biosensors at transition and steady-state conditions.

2. Principal structure

We assume that the thickness of the selective membrane as well as of the
perforated membrane of a biosensor is much less than its length and width. In
the biosensor, the selective membrane is of the uniform thickness. The holes in
the perforated membrane were modelled by right cylinders. The holes are of uni-
form diameter and spacing, forming a hexagonal pattern. Figure 1 presents the
biosensor schematically. Due to the uniform distribution of the holes, the entire
biosensor may be divided into equal hexagonal prisms with regular hexagonal
bases. For simplicity, it is reasonable to consider a circle whose area equals to
that of the hexagon and to regard one of the cylinders as a unit cell of the bio-
sensor. Due to the symmetry of the unit cell, we may consider only a half of the
transverse section of the unit cell. Very similar approach has been used in mod-
elling of partially blocked electrodes [18–20] and of a biosensor system based on
an array of enzyme microreactors [21].

Figure 2 shows the profile of the unit of the biosensor, represented schemat-
ically in figure 1. In figure 2, a2 is the radius of the base of the unit cell, while a1

is the radius of the holes, b1 stands for the thickness of the selective membrane,
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Figure 1. A principal structure of the biosensor. The figure is not to scale.

Figure 2. The profile of the unit cell at Y-plane. z = 0 represents the electrode surface, a1 is the
radius of holes, a2 is the half distance between centres of adjacent holes. d1 = b1, d2 = b2 − b1 and
d3 = b3 − b2 are the thickness of the selective membrane, the basic enzyme layer and the perforated

membrane, respectively.

d3 = b3−b2 is the thickness the perforated membrane, d2 = b2 − b1 is the thickness
of the basic enzyme layer being between the selective and perforated membranes.
We also assume that holes are filled with the enzyme.

3. Mathematical model

Let �1, �2 be closed regions, presented in figure 2, �2 – the upper bound-
ary of the region �2,

�1 = [0, a2] × [0, b1], (1)

�2 = [0, a2] × [b1, b2] ∪ [0, a1] × [b2, b3], (2)

�2 = [0, a1] × {b3}. (3)
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Let �i be the open region of the corresponding closed region �i , i = 1, 2.
In the region �1 the mass (of the product only) transport by diffusion takes
place, while in �2 – the enzyme reaction and mass transport by diffusion takes
place.

Governing equations (0<t�T ) are:

∂P1

∂t
= D1P �P1, (r, z) ∈ �1, (4)

∂S

∂t
= DS�S − VmaxS

KM + S
,

∂P2

∂t
= D2P �P2 + VmaxS

KM + S
, (r, z) ∈ �2, (5)

where � is the Laplace operator, S = S(r, z, t) is the substrate concentration,
Pi = Pi(r, z, t) is concentration of the reaction product in the region �i , DS,
D1P and D2P are the diffusion coefficients, Vmax is the maximal enzymatic rate
attainable with that amount of enzyme, when the enzyme is fully saturated with
substrate, KM is the Michaelis constant, and T is full time of the biosensor oper-
ation, i = 1, 2. The Laplace operator in cylindrical coordinates is described as
follows [22]:

�U = 1
r

∂

∂r

(
r
∂U

∂r

)
+ ∂2U

∂z2
.

The initial (t = 0) conditions are as follows:

S(r, z, 0) = 0, (r, z) ∈ �2\�2, (6)

S(r, z, 0) = S0, (r, z) ∈ �2, (7)

Pk(r, z, 0) = 0, (r, z) ∈ �k, k = 1, 2. (8)

The following boundary conditions express the symmetry of the unit cell
(0<t�T )

∂P1

∂r

∣∣∣∣
r=0

= ∂P1

∂r

∣∣∣∣
r=a2

= 0, z ∈ [0, b1], (9)

∂S

∂r

∣∣∣∣
r=0

= ∂P2

∂r

∣∣∣∣
r=0

= 0, z ∈ [b1, b3], (10)

∂S

∂r

∣∣∣∣
r=a2

= ∂P2

∂r

∣∣∣∣
r=a2

= 0, z ∈ [b1, b2]. (11)
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The product is electro-active substance. The electrode potential is chosen to
keep zero concentration of the product at the electrode surface. This is used in
the following boundary condition (0<t�T ):

P1(r, 0, t) = 0, r ∈ [0, a2]. (12)

On the boundary �2 the concentrations of both species are maintained con-
stant (0<t�T ),

S(r, b3, t) = S0, P2(r, b3, t) = 0, r ∈ [0, a1]. (13)

On the boundary of the perforated membrane we define non-leakage con-
ditions (0<t�T ),

∂S

∂r

∣∣∣∣
r=a1

= ∂P2

∂r

∣∣∣∣
r=a1

= 0, z ∈ [b2, b3], (14)

∂S

∂z

∣∣∣∣
z=b2

= ∂P2

∂z

∣∣∣∣
z=b2

= 0, r ∈ [a1, a2]. (15)

On the boundary between two adjusting regions we require the continuity
of the concentration of the reaction product. On that boundary we also define
non-leakage condition for the substrate (0<t�T ),

∂S

∂z

∣∣∣∣
z=b1

= 0, D1P
∂P1

∂z

∣∣∣∣
z=b1

= D2P
∂P2

∂z

∣∣∣∣
z=b1

,

(16)
P1(r, b1, t) = P2(r, b1, t), r ∈ [0, a2].

The measured current is accepted as a response of biosensors in physical exper-
iments. The current depends upon the flux of the reaction product at the elec-
trode surface, i.e., at the border z = 0. Consequently, the density I (t) (A/m2)
of the current at time t can be obtained explicitly from Faraday’s and Fick’s
laws using the flux of the product concentration P1 at the surface of the
electrode,

I (t) = neFD1P
1

πa2
2

∫ 2π

0

∫ a2

0

∂P1

∂z

∣∣∣∣
z=0

r drdϕ = neFD1P
2

a2
2

∫ a2

0

∂P1

∂z

∣∣∣∣
z=0

r dr, (17)

where ne is a number of electrons involved in a charge transfer at the electrode
surface, F is Faraday constant, F = 96485 C/mol and ϕ is the third cylindrical
coordinate.

We assume, that the system (4)–(16) approaches a steady-state as t → ∞,

I∞ = lim
t→∞ I (t). (18)
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4. Solution of the problem

Definite problems arise when solving analytically non-linear partial
differential equations in domain of the complex geometry. Because of this the
problem (4)–(18) was solved numerically using the finite difference technique
[23,24]. To find a numerical solution of the problem in the domain

(
�1 ∪ �2

) ×
[0, T ] we introduced a quasi-uniform grid ωrh × ωzh × ωτ ,

ωrh ={
ri : ri =ri−1 + hri, i = 1, . . . , Nl, . . . , N2 − 1, r0 = 0, rN1 =a1, rN2 =a2

}
,

ωzh =
{
zj : zj = zj−1 + hzj , j = 1, . . . , Ml, . . . , M2, . . . , M3 − 1, z0 = 0,

zM1 = b1, zM2 = b2, zM3 = b3

}
ωτ = {tn : tn = tn−1 + τn−1, n = 1, . . . , K, t0 = 0, tK = T },

ωlrh = {r : r ∈ ωrh, al−1 < r < al},
ωmzh = {z : z ∈ ωzh, bm−1 < z < bm},
ω1h = ωrh × ω1zh,

ω2h = (ωrh × ω2zh) ∪ (ω1rh × ω3zh) ∪ (ω1rh × {b2}) ∪ (a1, b2),

ω̄lrh = ωlrh ∪ {al−1} ∪ {al},
ω̄mzh = ωmzh ∪ {bm−1} ∪ {bm},

ω̄τ = ωτ ∪ {0},
ω̄1h = (ω̄rh × ω̄1zh),

ω̄2h = (ω̄rh × ω̄2zh) ∪ (ω̄1rh × ω̄3rh),

a0 = 0, b0 = 0, l = 1, 2, m = 1, 2, 3.

We assume the following notations:

Sn
ij = S(ri, zj , tn), (ri, zj , tn) ∈ ω̄1h × ω̄t ,

P n
kij = Pk(ri, zj , tn), (ri, zj , tn) ∈ ω̄kh × ω̄t ,

In = I (tn), tn ∈ ω̄t , k = 1, 2.

Using alternating direction method a semi-implicit linear finite difference
scheme has been built as a result of the difference approximation. The initial
conditions (6)–(8) were approximated as follows

S0
ij = 0, (r, z) ∈ ω̄2h\�2,

S0
ij = S0, (r, z) ∈ ω̄2h ∩ �2,

P 0
kij = 0, (r, z) ∈ ω̄kh, k = 1, 2.
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To simplify the further notations we introduce the following difference
operators:

	ru
n
ij = 1

rihr,i+1/2

(
ri+1/2

un
i+1,j − un

i,j

hr,i+1
− ri−1/2

un
ij − un

i−1,j

hri

)
,

	zu
n
ij = 1

hz,j+1/2

(
un

i,j+1 − un
i,j

hz,j+1
− un

ij − un
i,j−1

hzj

)
,


 un
ij = Vmaxu

n
ij

KM + un
ij

,

where hr,i+1/2 = (hri + hr,i+1)/2, hz,j+1/2 = (hzj + hz,j+1)/2, ri±1/2 = (ri + ri±1)/2.
Differential equations (4) and (5) were approximated by the following finite

difference scheme:

P
n+1/2
1ij − P n

1ij

τn/2
= D1P

(
	rP

n+1/2
1ij + 	zP

n
1ij

)
, (r, z) ∈ ω1h,

S
n+1/2
ij − Sn

ij

τn/2
= DS

(
	rS

n+1/2
ij + 	zS

n
ij

)
− 
Sn

ij , (r, z) ∈ ω2h,

P
n+1/2
2ij − P n

2ij

τn/2
= D2P

(
	rP

n+1/2
2ij + 	zP

n
2ij

)
+ 
Sn

ij , (r, z) ∈ ω2h,

P n+1
1ij − P

n+1/2
1ij

τn/2
= D1P

(
	rP

n+1/2
1ij + 	zP

n+1
1ij

)
, (r, z) ∈ ω1h,

Sn+1
ij − S

n+1/2
ij

τn/2
= DS

(
	rS

n+1/2
ij + 	zS

n+1
ij

)
− 
S

n+1/2
ij , (r, z) ∈ ω2h,

P n+1
2ij − P

n+1/2
2ij

τn/2
= D2P

(
	rP

n+1/2
2ij + 	zP

n+1
2ij

)
+ 
S

n+1/2
ij , (r, z) ∈ ω2h,

n = 0, 1, . . . , K − 1,

where tn+1/2 = tn + 0.5τn.
The boundary and matching conditions (9)–(16) were approximated as fol-

lows:

P n
1i0 = 0, i = 0, . . . , N2,

Sn
iM3

= S0, P n
2iM3

= 0, i = 0, . . . , N1,

P n
10j = P n

11j , P n
1N2j

= P n
1,N2−1,j , j = 1, . . . , M1,

Sn
0j = Sn

1j , P n
20j = P n

21j , j = M1, . . . , M3,

Sn
N2j

= Sn
N2−1,j , P n

2N2j
= P n

2,N2−1,j , j = M1, . . . , M2,

Sn
N1j

= Sn
N1−1,j , P n

2N1j
= P n

2,N1−1,j , j = M2 + 1, . . . , M3,

Sn
iM2

= Sn
i,M2−1, P n

2iM2
= P n

2i,M2−1, i = N1 + 1, . . . , N2,
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D1P(P n
1iMl

− P n
1iMl−1)/h1M1 = D2P(P n

2iMl+1 − P n
2iMl

)/h2M1+1, i = 1, . . . , N2,

Sn
iM1

= Sn
i,M1+1, P n

1iMl
= P n

2iMl
, i = 1, . . . , N2.

The system of linear algebraic equations can be solved efficiently because
of the tridiagonality of the matrix of the system.

Having numerical solution of the problem, the density of biosensor current
at time t = tn is calculated by

I (tn) = neFD1P
2

a2
2

N2−1∑
i=0

P n
1i1 − P n

1i0 + P n
1,i+1,1 − P n

1,i+1,0

2hz1
ri+1/2hr,i+1, n = 1, . . . , K.

5. Digital simulation

In the digital simulation, the main problem is an overload of calculation
due to the boundary conditions (12)–(13), and permissible conditions: a1 << a2

and b2 << b3. Due to the boundary conditions (12)–(13), to have an accurate
and stable result it was required to use very small step size in z direction at the
boundaries z = 0 and z = b3. Because of the concavity of an angle at the point
(a1, b2) is reasonable to use very small step size in both space directions: r and
z at the boundaries r = a1 and z = b3. Due to the matching conditions (16), we
used also small step size at the boundary z = b1. We assume, that farther from
all these peculiar boundaries, step size may increase in both space directions: r
and z. Consequently, in the direction r, an exponentially increasing step size was
used to both sides from a1: to a2 and to 0. In the direction z, an exponentially
increasing step size was used form 0 to b1/2, from b1 down to b1/2, from b1 to
(b1 + b2)/2, from b2 down to (b1 + b2)/2, from b2 to (b2 + b3)/2, and from b3

down to (b2 + b3)/2.
Usually, alternating direction method does not restrict time increment.

However, the step size in the direction of time is restricted due to the
non-linear reaction term in (5), boundary conditions and the geometry of
the domain. In order to achieve accurate and stable solution of the problem, at
the beginning of the reaction-diffusion process we employed the restriction con-
dition, which is usually used for fully explicit schemes [23,24],

τ0 <
h2

r minh2
z min

4Dmax(h2
r min+h2

z min)
,

Dmax = max (DS, D1P, D2P) , hr min = min
i=1,... ,N2

hri, hz min = min
j=1,... ,M3

hzj

.

Since the biosensor action obeys the steady-state assumption when t → ∞, it is
reasonable to apply an increasing step size in the time direction. The final step
size τK−1 was in a few orders of magnitude higher than the first one τ0.
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The mathematical model as well as the numerical solution of the model was
evaluated for different values of the maximal enzymatic rate Vmax, substrate con-
centration S0 and different geometries of the perforated membrane. The follow-
ing values of the parameters were constant in the numerical simulation of all the
experiments:

D1P = 10−8 cm2/s, DS = D2P = 3 × 10−6 cm2/s,
KM = 10−7 mol/cm3, ne = 2.

(19)

The steady-state biosensor current I∞ (the biosensor response) as well as
the time moment of occurrence of the maximal current (response time) were
assumed and analyzed as ones of the most important characteristics of biosen-
sors.

In digital simulation, the biosensor response time was assumed as the time
when the absolute current slope value falls below a given small value normal-
ized with the current value. In other words, the time needed to achieve a given
dimensionless decay rate ε is used,

TR = min
i(t) > 0

{
t :

1
I (t)

∣∣∣∣dI (t)

dt

∣∣∣∣ < ε

}
. (20)

Consequently, the current at the response time TR was assumed as the
steady-state biosensor current I∞. We employed ε = 10−4. However, the response
time T = TR as an approximate steady-state time is very sensitive to the decay
rate ε, i.e., TR → ∞, when ε → 0. Because of this, we employed a half of steady-
state time to investigate the behaviour the response time [22]. The resultant rel-
ative output signal function I ∗(t) can be expressed as follows:

I ∗(t) = IR − I (t)

IR
, IR = I (TR), I∞ = IR, (21)

where I (t) is the output current density at time t as defined in (17), IR is
assumed as the steady-state current I∞. Let us notice, that 0 � I ∗(t) � 1 at all
t � 0, I ∗(0) = 1 and I ∗(TR) = 0. Let T0.5 be the time at which the reaction-
diffusion process reaches the medium, called half-time of steady-state or, par-
ticularly, half of the time moment of occurrence of the maximal current, i.e.,
I ∗(T0.5) = 0.5.

The adequacy of the mathematical and numerical models was evaluated
using known analytical solutions for amperometric biosensors with a single flat
enzyme layer. At relatively low concentrations of the substrate, S0 << KM, the
steady-state current can be calculated as follows [25]:

I∞ = lim
t→∞ i(t) = neFDSS0

1
d

(
1 − 1

cosh(σ )

)
, (22)
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σ 2 = Vmaxd
2

DSKM
, (23)

where d is the thickness of the enzyme layer. The dimensionless factor σ 2 is
known as the diffusion modulus (Damköhler number) [26]. In the case of flat
one-layer biosensors the diffusion modulus σ 2 essentially compares the rate
of enzyme reaction (Vmax/KM) with the diffusion through the enzyme layer
(d2/DS). The biosensor response is known to be under diffusion control when
σ 2 � 1. If σ 2 � 1, then the enzyme kinetics predominates in the response.

In the case of very high substrate concentration, S0 � KM, the stationary
current is expressed as follows [27]:

i∞ = neFVmaxd

2
. (24)

The numerical solution of the model (4)–(17) was compared with the ana-
lytical ones (22) and (24), accepting b1 = 0, b2 = b3 = 12µm and a1 = a2

at four values of Vmax : 10−9, 10−8, 10−7, 10−6 mol/cm3 s and two values of S0 :
10−11, 10−4 mol/cm3. In all the cases, the relative difference between the numeri-
cal and analytical solutions was less than 1%.

6. Results and discussion

Using computer simulation we have investigated the dependence of the
steady-state biosensor current as well as biosensor response time on the geom-
etry of the membrane perforation. To investigate the effect of the relative radius
of the holes, the radius a1 of the holes was expressed through the radius a2 of
the unit cell, and the biosensor response was calculated at various values of a1

and a2,

a1 = (1 − α)a2, (25)

where α expresses the degree of covering of the surface of the perforated mem-
brane. (1 − α) can be also called a relative radius of the holes. The case when
α = 0 (a1 = a2) corresponds to a fully open (uncovered) enzyme layer, i.e., no
perforated membrane appears on the enzyme layer. In that case (a1 = a2), b3 −b1

is the thickness of the enzyme layer. The case of α = 1 (a1 = 0) corresponds to
another limiting case when the membrane has no holes, i.e., the biosensor has
no contact with the substrate. Of course, no biosensor current rises in the case
of α = 1. If the area of the entire electrode surface equals A, then the area of
all the halls equals (1 − α)2A.

The steady-state biosensor current is very sensitive to changes of the maxi-
mal enzymatic rate Vmax and substrate concentration S0 [1, 2, 28]. Because of this,
we investigate the influence of the geometry of the membrane perforation on
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the biosensor response at different values of Vmax and S0. Changing values of
these two parameters, the steady-state current I∞ varies even in orders of magni-
tude. To evaluate the effect of the geometry of the membrane perforation on the
biosensor response we normalize the biosensor current. Let IR(α) be the steady
state current of a biosensor, having the degree α of the surface covering. Thus
IR(0) corresponds to the steady state current of a biosensor, having the radius
of the holes a1 coinciding to the radius a2 of the unit cell, a1 = a2. We express
the normalized steady-state biosensor current IRN as the steady-state current of
the biosensor, having perforated membrane upon the enzyme layer, divided by the
steady-state current of the corresponding biosensor, having no perforated mem-
brane upon the enzyme layer. Assuming T0.5(α) as the half-time of the biosensor
steady-state response at given relative radius (1 − α) of the holes, we introduce
the normalized half time T0.5N,

IRN(α) = IR(α)

IR(0)
, T0.5N(α) = T0.5(α)

T0.5(0)
, α = 1 − a1

a2
, 0 � α � 1. (26)

Results of calculations at a2=1µm, four values of Vmax:1, 10, 100,
1000 nmol/cm3 s and three values of S0 : 1, 10, 100 nmol/cm3 are depicted in fig-
ures 3 and 4. The radius a1 of holes was changed from 0.05 to 1µm. Figure 3
presents the dependence of the biosensor current on the covering degree α. Fig-
ure 4 presents the dependence of the half time T0.5N of the steady state biosensor
response on α.

Figure 3. The normalized steady-state current IRN versus the covering degree α = 1−a1/a2 at a2 =
1µm, d1 = d2 = 2µm, d3 = 10µm and different values of substrate concentration S0 (mol/cm3) as

well as maximal enzymatic rate Vmax (mol/cm3s).
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Figure 4. The normalized half-time T0.5N of the steady-state biosensor response versus the covering
degree α. Values of all the parameters are the same as in figure 3.

One can see in figure 3, the steady-state current is a non-monotonous func-
tion of the dimensionless degree α of the covering of the perforated membrane
surface. At low values of the ratio α, the steady state current increases with
increase of α. Later the current starts to decrease. As it was mentioned above,
in the case of fully closed membrane IRN(1) equals 0. The behaviour of biosen-
sor response significantly depends on the maximal enzymatic activity Vmax. At
very high maximal enzymatic activity Vmax(10−6 mol/cm3 s) the steady state cur-
rent IR practically remains stagnant when the degree α increases from 0 to about
0.7. At Vmax = 10−6 mol/cm3 s, the maximum of the normalized current IN equals
approximately to 1.16 for S0 = 10−7 and 1.07 for S0 = 10−9 mol/cm3. How-
ever, at low enzymatic rate Vmax(10−9 mol/cm3 s) the steady-state current IR of
the biosensor having perforated membrane onto the top of the enzyme layer, can
generate the steady-state current which is more than 10 times higher than the
current if the biosensor would be without the perforated membrane (α = 0).
For example, at Vmax = 10−9 mol/cm3 s, S0 = 10−7 mol/cm3 and α = 0.95(a1 =
0.05, a2 = 1µm), IRN ≈ 12 (IR(0.95) = 13.7, IR(0) = 1.14 nA/cm2). This feature
of biosensors with perforated and selective membranes can be applied in design
of novel highly sensitive biosensors. Selecting the geometry of perforated mem-
brane allows increasing the sensitivity of the biosensors.

Figure 4 shows the dependence of the half-time of the steady-state biosen-
sor response on the ratio α. One can see in figure 4, the half-time T0.5 increases
monotonously with increasing α. This property is valid for all considered con-
centrations S0 of the substrate and values of the maximal enzymatic rate Vmax.
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The gradient of change of T0.5N is especially high at low values of Vmax and very
small radiuses of holes, i.e., when α approaches to 1.

The parameter a2 characterizes a frequency of the holes in the perforated
membrane. A smaller value of a2 corresponds to a higher density of the holes.
To investigate the dependence of the biosensor response on the frequency of
the holes we calculated the steady-state currents at constant radius a1=0.1µm
of holes changing a2 from a1(α=0) to 20a1(α=0.95). Results of calculations at
different values of maximal enzymatic rate Vmax and substrate concentration S0

are depicted in figure 5. In this figure we see very similar shape of curves as
in figure 3. Consequently, the absolute values of the radius a1 of holes as well
as the distance between adjacent holes have only weak influence on the biosen-
sor response. The biosensor response depends mainly on the join factor α of the
geometry of perforation. For example, at Vmax=10 nmol/cm3 s, S0=10 nmol/cm3,
a1=0.2, a2=1µm, the steady state current IR equals to 11.1 nA/cm2. In the case
of two times greater radius of holes (a1=0.1, a2=0.5µm) and the same degree α,
the current IR=11.5 nA/cm2, i.e., IR differs in several percents only. In both these
cases, the covering degree α is the same, α=0.5.

To investigate the dependence of the biosensor response on the thickness
d3=(b3 − b2) of the perforated membrane we calculated the biosensor response
at constant radius a1=0.1µm of holes, radius a2=1µm (α=0.9) of the cell, the
thickness d1=b1=2µm of the selective membrane and the thickness d2=b2 −
b1=2µm of the basic enzyme layer. The thickness d3 of the perforated membrane
varied from 1 to 20µm. In this case the current was normalized with respect to

Figure 5. The normalized steady-state current IRN versus the covering degree α at a1 = 0.1µm
changing a2. Values of all other parameters are the same as in figure 3.
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the minimal value d3m of the thickness of the perforated membrane to be ana-
lyzed,

Ip(d3) = IR(d3)

IR(d3m)
, d3 � d3m � 0, d3 = b3 − b2, (27)

where Ip(d3) is the normalized steady-state current, calculated at the thickness
d3 of the perforated membrane. Since in the numerical experiments d3 varied
from 1 to 20µm, then d3m=1µm. Results of the calculations are depicted in fig-
ure 6, where one can see, that the effect of the thickness d3 notably depends on
the maximal enzymatic rate Vmax. At highest maximal enzymatic rate (Vmax =
1µmol/cm3 s) the steady-state current IR decreases with increase of the thick-
ness d3, while at much lower value of Vmax=1 nmol/cm3s, IR is a monotonously
increasing function of d3. At moderate values of Vmax, IR is a non-monotonous
function of the thickness d3 of the perforated membrane. The effect of the sub-
strate concentration S0 on the behaviour of the biosensor current is rather small.

Very similar behaviour of the biosensor response was observed when mod-
elling one-layer biosensors acting in a non-stirred analyte [28]. Then the steady
state biosensor current was found to be a monotonous decreasing function of
the thickness of the external diffusion layer if the biosensor response is distinctly
under diffusion control (σ 2 >> 1). In the cases when the enzyme kinetics con-
trols the biosensor response (σ 2 << 1), the steady state current increases with
increase of the thickness of the diffusion layer. Thus the steady state current

Figure 6. The normalized steady-state current I3 versus the thickness d3 = (b3 − b2) of the perfo-
rated membrane at a1 = 0.1µm, a2 = 10a1, d3m = 1µm. Values of all other parameters and notation

are the same as in figure 3.
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varied up to several times. When σ 2 ≈ 1, the variation of the steady state current
is rather small.

On the other hand, assuming the perforated membrane as the periodic
media, the homogenization process can be applied to the domain of the perfo-
rated membrane [29]. After this, the perforated membrane may be modelled as
an external diffusion layer with the averaging diffusion coefficient [17]. So, the
effect of the thickness of the perforated membrane on the biosensor response
could probably be explained by the effect of the diffusion layer external to basic
enzyme layer. In the case when the homogenization is applied, 1-D formula-
tion of the mathematical model is enough. Unfortunately, the averaging diffusion
coefficient cannot be calculated precisely and it has a limited physical sense. For
comparison, in the case of 2-D formulation (4)–(17) of the model, no averag-
ing diffusion coefficients are required and all the coefficients have clear physical
sense.

To be sure, that the effect of the thickness of the perforated membrane on
the biosensor response is really very similar to the effect of the thickness of the
external diffusion layer, the calculations were repeated for several more values
differing in an order of magnitude of the thickness d2 of the basic enzyme layer.
Results of the calculations showed that the behaviour of the biosensor response
directly depends on thickness d2 as well as on the maximal enzymatic rate Vmax.
Thus we can conclude that the steady-state current IR decreases with increase of
the thickness d3 of the perforated membrane when the biosensor response is dis-
tinctly under diffusion control, and IR is a monotonous increasing function of
d3 when the enzyme kinetics controls the biosensor response.

The dependence of the biosensor response on the thickness d1 = b1 of the
selective membrane was also investigated. The biosensor response was calculated
at constant radius a1 = 0.1µm of holes, radius a2 = 1µm (α = 0.9) of the cell,
the thickness d3 = 10µm of the selective membrane and the thickness d2 = 2µm
of the basic enzyme layer. In these calculations, the current was normalized with
respect to the minimal value d1m of the thickness of the selective membrane to
be analyzed,

Is(d1) = IR(d1)

IR(d1m)
, d1 � d1m � 0, d1 = b1, (28)

where Is(d1) is the normalized steady-state current, calculated at the thickness d1

of the selective membrane. The thickness d1 of the perforated membrane varied
from 0.5 to 10µm, d1m = 0.5µm. Results of the calculations are depicted in fig-
ure 7. One can see in figure 7, that the effect of the thickness d1 practically is
independent from the maximal enzymatic rate Vmax as well as from the substrate
concentration S0. IR is a monotonously decreasing function of d1 at all values of
Vmax and S0 differing in orders of magnitude. The normalized currents were well



360 R. Baronas et al. / Computational modelling of biosensors

Figure 7. The normalized steady-state current Is versus the thickness d1 = b1 of the selective
membrane, d1m = 0.5µm. Values of all other parameters and notation are the same as in figure 3.

fitted with the following exponential function:

Is(d1) = 0.27 + 0.81 × exp(−2500d1). (29)

7. Conclusions

The mathematical model (4)–(17) of amperometric biosensors with perfo-
rated and selective membranes can be successfully used to investigate the kinetic
peculiarities of the biosensor response (figure 1). The computer simulation of the
biosensors can be used as a powerful tool in design of novel highly sensitive bio-
sensors.

The steady-state current of the biosensor is a non-monotonous function
of the dimensionless degree α of the covering of the surface of the perforated
membrane (figures 3 and 5). The sensitivity of biosensors can be increased by
selecting of the appropriate geometry of perforated membrane. The level of the
possible increase of the sensitivity highly depends on the maximal enzymatic
rate Vmax. Significant gain in sensitivity can be achieved at low values of Vmax

only. The half-time T0.5 of the steady-state biosensor response is a monotonous
increasing function of α at wide range of substrate concentrations S0 and maxi-
mal enzymatic rates Vmax (figure 4).

The steady state current IR decreases with increase of the thickness d3

of the perforated membrane when the biosensor response is distinctly under
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diffusion control, and IR is a monotonous increasing function of d3 when the
enzyme kinetics controls the biosensor response (figure 6).

The steady state current IR is an exponentially decreasing function of the
thickness d1 of the selective membrane at wide range of enzymatic activities Vmax

as well as substrate concentrations S0 (figure 7). The thinner selective membrane
is, the higher biosensor current is.
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